Theoretical Study of Stability, Structures, and Aromaticity of Multiply N-Confused Porphyrins

Hiroyuki Furuta,*,†,‡ Hiromitsu Maeda,† and Atsuhiro Osuka*,†

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi 333-0012, Japan

hfuruta@kuchem.kyoto-u.ac.jp

Received August 23, 2001

The total electronic energy and nucleus-independent chemical shift (NICS) of 95 isomers of N-confused porphyrin (NCP: normal porphyrin (N_0CP), singly N-confused porphyrin (N_1CP), doubly N-confused porphyrin (N_2CP), triply N-confused porphyrin (N_3CP), and fully N-confused porphyrin (N_4CP)) have been calculated by the density functional theory (DFT) method. The stability of NCP decreased by increasing the number of confused pyrrole rings. Namely, the relative energies of the most stable isomers in each confusion level increased in a stepwise manner approximately by +18 kcal/mol: 0 (N_0CP1), +17.147 (N_1CP2), +37.461 (N_2CPb3), +54.031 (N_3CPd6), and +65.636 kcal/mol (N_4CPc8). In this order, the mean plane deviation of these isomers increased from 0.000 to 0.123, 0.170, 0.215, and 0.251 Å, respectively. The unusual tautomeric forms of pyrrole ring with an sp³-carbon were found in the stable forms of N_3CP and N_4CP. The NICS values at the mean position of the 24 core atoms were nearly the same for the most aromatic isomers regardless of the confusion level: -15.1280 (N_0CP1), -13.8493 (N_1CP2), -13.7267 (N_2CPd1), -11.7723 (N_3CPb5), and -13.6224 ppm (N_4CPa6). The positive correlation between aromaticity and stability was inferred from the plots of NICS and the relative energy of NCP for N_0CP, N_1CP, and trans-N_2CP. On the other hand, the correlation was negative for cis-N_2CP, N_3CP, and N_4CP isomers.

1. Introduction

Syntheses and the metal coordination chemistry of porphyrin analogues have been attracting considerable attention due to the possibility of new porphyrin chemistry.1 Among a variety of porphyrin analogues, an inverted porphyrin isomer, "N-confused porphyrin (NCP)", is unique in that it could form a family with a large number of confused isomers.2 Even though only two types of isomers, singly N-confused porphyrin (N_1CP) and doubly N-confused porphyrin (cis-N2CP), have been synthesized until now, the rich coordination chemistry and the unprecedented reactivity have been continuously disclosed.²⁻⁶ For example, N₁CP forms square-planar complexes with both the divalent and trivalent a^8 metals such as Ni(II)^{2b} and Ag(III),^{4c} and N₂CP can coordinate higher oxidation state of metal like Cu(III)^{6a} to afford the organometallic complex. The distinct outer-coordination

† Kyoto University.

at the peripheral nitrogen of the *confused* pyrrole ring was also demonstrated with $Pd(II)^{4g}$ and $Rh(I)^{4i}$ complexes. In a different level of the chemistry, a new porphyrinoid, N-fused porphyrin, was synthesized from N_1CP by using the ring-inversion property. 4d,e

Previously, we have examined the stability and the structures of N_2CP isomers by using the density functional theory (DFT) method and shown that the less aromatic tautomers were not necessarily unstable and the balance between the steric repulsion in the core and

(6) (a) Furuta, H.; Maeda, H.; Osuka, A. J. Am. Chem. Soc. 2000, 122, 803-807. (b) Furuta, H.; Maeda, H.; Osuka, A.; Yasutake, M.; Shinmyozu, T.; Ishikawa, Y. Chem. Commun. 2000, 1143-1144. (b Furuta, H.; Maeda, H.; Osuka, A. J. Org. Chem. 2000, 65, 4222-4226; 5450 (Correction). (d) Araki, K.; Winnischofer, H.; Toma, H. E.; Maeda, H.; Osuka, A.; Furuta, H. Inorg. Chem. 2001, 40, 2020-2025. (e) Furuta, H.; Maeda, H.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 6435-

6436.

[‡] PŘESTO, JST.

^{(1) (}a) Sessler, J. L.; Weghorn S. J. Expanded, Contracted, and Isomeric Porphyrins; Elsevier: Oxford, 1997. 520 pp. (b) The Porphyrin Handbook, Kadish, K. M., Smith, K. M., Guilard, R., Eds; Academic Press: San Diego, 1999; Vol. 2.
(2) (a) Furuta, H.; Asano, T.; Ogawa, T. J. Am. Chem. Soc. 1994,

^{(2) (}a) Furuta, H.; Asano, T.; Ogawa, T. *J. Am. Chem. Soc.* **1994**, *116*, 767–768. (b) Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Głowiak, T. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 779–781. (c) Sessler, J. L. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1348–1350. (d) Latos-Grażyński, L. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds; Academic Press: San Diego, 1999; Vol. 2, Chapter 14.

^{(3) (}a) Chmielewski, P. J.; Latos-Grażyński, L. *J. Chem. Soc., Perkin Trans. 2* **1995**, 503–509. (b) Chmielewski, P. J.; Latos-Grażyński, L.; Głowiak, T. *J. Am. Chem. Soc.* **1996**, *118*, 5690–5701. (c) Chmielewski, P. J.; Latos-Grażyński, L. *Inorg. Chem.* **1997**, *36*, 840–845. (d) Chmielewski, P. J.; Latos-Grażyński, L.; Schmidt, I. *Inorg. Chem.* **2000**, *40*, 5475–5482. (e) Chmielewski, P. J.; Latos-Grażyński, L. *Inorg. Chem.* **2000**, *40*, 5639–5647. (f) Schmidt, I.; Chmielewski, P. J. *Tetrahedron Lett.* **2001**, *42*, 1151–1154.

^{(4) (}a) Ariga, K.; Kunitake, T.; Furuta, H. J. Chem. Soc., Perkin Trans. 2 1996, 667–672. (b) Ishikawa, Y.; Yoshida, I.; Akaiwa, K.; Koguchi, E.; Sasaki, T.; Furuta, H. Chem. Lett. 1997, 453–454. (c) Furuta, H.; Ogawa, T.; Uwatoko, Y.; Araki, K. Inorg. Chem. 1999, 38, 2676–2682. (d) Furuta, H.; Ishizuka, T.; Osuka, A.; Ogawa, T. J. Am. Chem. Soc. 1999, 121, 2945–2946. (e) Furuta, H.; Ishizuka, T.; Osuka, A.; Ogawa, T. J. Am. Chem. Soc. 2000, 122, 5748–5757. (f) Ogawa, T.; Furuta, H.; Morino, A.; Takahashi, M.; Uno, H. J. Organomet Chem. 2000, 661, 551–557. (g) Furuta, H.; Kubo, N.; Maeda, H.; Ishizuka, T.; Osuka, A.; Nanami, H.; Ogawa, T. Inorg. Chem. 2000, 39, 5424–5425. (h) Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa, H.; Ishikawa, Y. J. Am. Chem. Soc. 2001, 123, 6207–6208. (i) Srinivasan, A.; Furuta, H.; Osuka, A. Chem. Commun. 2001, 1666–1667.

^{(5) (}a) Heo, P.-Y.; Shin, K.; Lee, C.-H. Tetrahedron Lett. 1996, 37, 197–200. (b) Lee, C.-H.; Kim, H.-J. Tetrahedron Lett. 1997, 38, 3935–3938. (c) Liu, B. Y.; Brückner, C.; Dolphin, D. J. Chem. Soc., Chem. Commun. 1996, 2141–2142. (d) Narayanan, S. J.; Sridevi, B.; Srinivasan, A.; Chandrashekar, T. K.; Roy, R. Tetrahedron Lett. 1998, 39, 64, 1596–1603. (f) Lash, T. D.; Richter, D. T.; Shiner, C. M. J. Org. Chem. 1999, 64, 7973–7982. (g) Geier, G. R., III; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, I, 1455–1458.

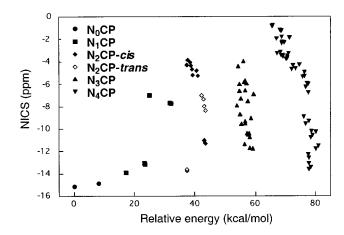
(6) (a) Furuta, H.; Maeda, H.; Osuka, A. J. Am. Chem. Soc. 2000,

Structures of NCP Isomers Chart 1.

the aromaticity was main factor in determining the relative stability of each isomer. 6c Since then, we have been wondering whether the result is general and applicable to other NCP isomers bearing more confused rings. To answer this question, we have extended the DFT calculations to all the isomers of the **NCP** family. In particular, the nucleus-independent chemical shift (NICS) was calculated to evaluate the aromaticity of each isomer.^{7,8} In this paper, we describe the DFT calculation on all the NCP isomers and discuss their stability, structures, and aromaticity on the basis of the total energies and NICS values. Such calculations on a whole set of **NCP** isomers have never been reported, and thus, the results described here would become a general reference not only for the theoretical study but also for the synthetic attempts toward NCP family members in the future.

2. Method

Ab initio calculations were carried out with the Gaussian 98 program⁹ for the skeleton of **NCP** isomers on the HPCalpha UP264 (HIT) computer. The structures were optimized with B3LYP/6-31G**. The final estimation of the total electronic energies were performed at the B3LYP level with the 6-31G** basis set. The relative energies were calculated from the energy difference between each isomers and the normal porphyrin (N_0CP1). NICS values were determined at the mean position of the 24 heavy core atoms by the GIAO method¹⁰ at the B3LYP/6-31G** level.


3. Results and Discussion

3-1. Relative Energy and NICS of NCP Isomers. The **NCP** isomers are grouped into five levels: *normal* porphyrin (N_0 **CP**), N-confused porphyrin (N_1 **CP**), doubly N-confused porphyrin (N₂CP), triply N-confused porphyrin (N_3CP) , and fully N-confused porphyrin (N_4CP) (Chart 1). Multiply N-confused porphyrins (N₂CP, N₃CP, N_4CP) contain several regioisomers and tautomers that differ in the position of nitrogens and NH hydrogens,

(7) (a) Schleyer, P. v. R.; Maerker, C.; Dransfield, A.; Jiao, H.; Hommes, N. J. R. E. *J. Am. Chem. Soc.* **1996**, *118*, 6317–6318. (b) Tokitoh, N.; Wakita, K.; Okazaki, R.; Nagase, S.; Schleyer, P. v. R.;

(10) Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990,

112, 8251-8260.

Figure 1. Plots of NICS (ppm) and the relative energies (kcal/ mol) for NCP isomers.

respectively. A total of 95 NCP structures (2-N₀CP, $6-N_1CP$, $17-N_2CP$, $24-N_3CP$, $46-N_4CP$) were subjected to the calculation (Table 1).11 For discussion, the NCP isomers were further classified into inner-2H, 3H, 4H, 5H, and inner-6H according to the number of hydrogens in the core.

The calculated relative energy and NICS values of **NCP** isomers are tabulated in Table 1 and plotted in Figure 1. When the number of *confused* pyrrole rings is increased, the macrocycles tend to be destabilized stepwise by approximately +18 kcal/mol. For example, the relative energies of the most stable isomers in each confusion level are 0 (N₀CP1), +17.147 (N₁CP2), +37.461 (N_2CPb3) , +54.031 (N_3CPd6) , and +65.636 kcal/mol (N₄CPc8), respectively. On the other hand, the magnitude of the aromaticity estimated by NICS for these isomers does not differ largely. Namely, the NICS values of the most aromatic isomers are -15.1280 (N_0CP1) , -13.8493 (N_1CP2) , -13.7267 (N_2CPd1) , -11.7723 (**N₃CPb5**), and -13.6224 ppm (**N₄CPa6**), respectively. Interestingly, the most stable isomers of N₂CP, N₃CP, and N₄CP are not necessarily the most aromatic but rather nonaromatic, especially in the case of N_4CP . This is a marked contrast to N_0CP and N_1CP , where the most stable isomers show the highest negative NICS values. The details are discussed below.

3-2. The Structures of the Most Stable NCP **Isomers.** The optimized structures of the most stable tautomers in each confusion level (NoCP1, NoCP2, N₂CPb3, N₃CPd6, N₄CPc8) are illustrated in Figure 2. The mean plane deviation and the dihedral angles of the pyrrole rings to the mean plane are shown in Table 2.12

(12) Cartesian coordinates of **NCP** family are shown in Supporting Information.

Jiao, H. J. Am. Chem. Soc. 1997, 119, 6951–6952.

(8) Juselius, J.; Sundholm, D. J. Org. Chem. 2000, 65, 5233–5237.

(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V. Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. Gaussian 98 (Revision A.9); Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽¹¹⁾ To avoid the complexity, the nonconjugated isomers of the isoporphyrin type that bears an sp³-carbon at the *meso* position were not included in the present study. See also ref 18.

Table 1. Structures, Calculated Total Energies (Hartree), Relative Energies (kcal/mol), and NICS (ppm) of NCP Isomers and Tautomers^a

N₀CP

N₀CP1 -989.5777539 (standard) 0 kcal/mol NICS = -15.1280 ppm

N₀CP2 -989.5647101 8.185 kcal/mol NICS = -14.8949 ppm

N₁CP

N₁CP1 -989.540095075 23.631 kcal/mol NICS = -13.1522 ppm

N₁CP2 -989.5504271 17.147 kcal/mol NICS = -13.8493 ppm

N₁CP3 -989.540622688 23.300 kcal/mol NICS = -13.0547 ppm

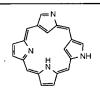
N₁CP4 -989.526588787 32.107 kcal/mol NICS = -7.7155 ppm

N₁CP5 -989.538028547 24.928 kcal/mol NICS = -7.0308 ppm

N₁CP6 -989.527263470 31.683 kcal/mol NICS = -7.7019 ppm

cis-N2CP

N₂CPa1 -989.5090252 43.127 kcal/mol NICS = -11.0261 ppm


N₂CPa2 -989.5122223 41.121 kcal/mol NICS = -5.2836 ppm

N₂CPa3 -989.5149786 39.392 kcal/mol NICS = -5.1993 ppm

N₂CPa4 -989.517809160 37.615 kcal/mol NICS = -3.8481 ppm

N₂CPa5 -989.516290260 38.569 kcal/mol NICS = -4.0591 ppm

N₂CPb1 -989.5086676 43.352 kcal/mol NICS = -11.2278 ppm

N₂CPb2 -989.5160101 38.744 kcal/mol NICS = -4.3425 ppm

N₂CPb3-989.5180558
37.461 kcal/mol
NICS = -4.2840 ppm

N₂CPc1 -989.508425 43.504 kcal/mol NICS = -11.2985 ppm

N₂CPc2 -989.5150862 39.324 kcal/mol NICS = -4.6654 ppm

N₂CPc3 -989.5129892 40.640 kcal/mol NICS = -4.8122 ppm

Table 1 (Continued)

trans-N2CP

N₂CPd1 -989.5179548 37.524 kcal/mol NICS = -13.7267 ppm

N₂CPd2 -989.5082536 43.612 kcal/mol NICS = -8.3734 ppm

N₂CPd3 -989.5104415 42.239 kcal/mol NICS = -7.0076 ppm

N₂CPe1 -989.517989 37.503 kcal/mol NICS = -13.6328 ppm

N₂CPe2 -989.5094258 42.876 kcal/mol NICS = -7.3698 ppm

N₂CPe3 -989.509004 43.141 kcal/mol NICS = -7.9410 ppm

N₃CP

N₃CPa1 -989.483161851 59.357 kcal/mol NICS = -6.9223 ppm

N₃CPa2 -989.489654560 55.283 kcal/mol NICS = -7.2644 ppm

N₃CPa3 -989.490310344 54.871 kcal/mol NICS = -5.9661 ppm

N₃CPa4 -989.486306569 57.384 kcal/mol NICS = -10.3923 ppm

N₃CPa5 -989.485735497 57.742 kcal/mol NICS = -10.5250 ppm

N₃CPa6 -989.489268707 55.525 kcal/mol NICS = -9.5548 ppm

N₃CPb1 -989.488350442 56.101 kcal/mol NICS = -3.9419 ppm

N₃CPb2 -989.490977916 54.452 kcal/mol NICS = -4.4231 ppm

N₃CPb3 -989.487948664 56.353 kcal/mol NICS = -5.8334 ppm

N₃CPb4 -989.487478837 58.649 kcal/mol NICS = -9.0236 ppm

N₃CPb5 -989.483259186 59.296 kcal/mol NICS = -11.7723 ppm

N₃CPb6 -989.485474118 57.906 kcal/mol NICS = -10.3754 ppm

N₃CPc1 -989.486874995 57.027 kcal/mol NICS = -5.9189 ppm

N₃CPc2 -989.490552102 54.720 kcal/mol NICS = -6.5945 ppm

N₃CPc3 -989.487446450 56.668 kcal/mol NICS = -6.5462 ppm

N₃CPc4 -989.484907469 58.262 kcal/mol NICS = -11.6985 ppm

N₃CPc5 -989.484905844 58.263 kcal/mol NICS = -10.7238 ppm

N₃CPc6 -989.490134498 54.982 kcal/mol NICS = -8.7214 ppm

N₃CPd1 -989.487378575 56.711 kcal/mol NICS = -9.3328 ppm

N₃CPd2 -989.487375568 56.713 kcal/mol NICS = -5.7304 ppm

N₃CPd3 -989.485891389 57.644 kcal/mol NICS = -7.5281 ppm

N₃CPd4 -989.487536035 56.613 kcal/mol NICS = -9.5006 ppm

N₃CPd5 -989.487768255 56.467 kcal/mol NICS = -11.3402 ppm

N₃CPd6 -989.491650435 54.031 kcal/mol NICS = -7.9181 ppm

Table 1. (Continued)

N₄CP

N₄CPa1 -989.458747010 74.682 kcal/mol NICS = -4.3134 ppm

N₄CPa2 -989.468718571 68.420 kcal/mol NICS = -3.1643 ppm

N₄CPa3 -989.468672974 68.449 kcal/mol

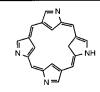
N₄CPa4 -989.462831343 72.115 kcal/mol NICS = -4.6724 ppm

N₄CPa5 -989.453623397 77.893 kcal/mol NICS = -9.3503 ppm

N₄CPa6 -989.453676560 77.859 kcal/mol NICS = -13.6224 ppm

N₄CPb1 -989.455933595 76.443 kcal/mol NICS = -4.9878 ppm

N₄CPb2 -989.465159800 70.653 kcal/mol NICS = -3.4828 ppm


N₄CPb3 -989.463875110 71.460 kcal/mol NICS = -1.8652 ppm

N₄CPb4 -989.460688858 73.459 kcal/mol NICS = -4.6061 ppm

N₄CPb5 -989.465272097 70.583 kcal/mol NICS = -3.6573 ppm

N₄CPb6 -989.456102010 76.337 kcal/mol NICS = -5.3072 ppm

N₄CPb7 -989 468257733 68.709 kcal/mol NICS = -1.8244 ppm

N₄CPb8 -989.464528802 71.049 kcal/mol NICS = -3.2641 ppm

N₄CPb9 -989.472935151 65.774 kcal/mol NICS = -0.8065 ppm

N₄CPb10 -989.465966729 70.147 kcal/mol NICS = -3.7774 ppm

N₄CPb11 -989.457046592 75.745 kcal/mol NICS = -5.3507 ppm

N₄CPb12 -989.470534451 67.281 kcal/mol NICS = -3.2654 ppm

N₄CPb13 -989.467548432 69.155 kcal/mol NICS = -3.4610 ppm

N₄CPb14 -989.469381423 68.004 kcal/mol NICS = -1.1870 ppm

N₄CPb15 -989.467781964 69.638 kcal/mol NICS = -2.2302 ppm

N₄CPb16 -989.453919413 77.707 kcal/mol NICS = -6.7700 ppm

N₄CPb17 -989.452640342 78.510 kcal/mol NICS = -10.7942 ppm

N₄CPb18 -989.451687969 79.107 kcal/mol NICS = -10.5675 ppm

N₄CPb19 -989.456502654 76.086 kcal/mol NICS = -8.9142 ppm

N₄CPb20 -989.450130193 80.085 kcal/mol NICS = -10.2937 ppm

N₄CPb21 -989.453561447 77.932 kcal/mol NICS = -12.5862 ppm

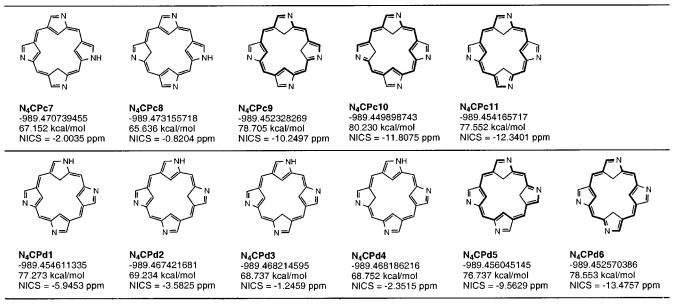
N₄CPb22 -989.453764146 77.804 kcal/mol NICS = -13.1394 ppm

N₄CPc1 -989.454155273 77.559 kcal/mol NICS = -5.9645 ppm

N₄CPc2 -989.462008597 72.631 kcal/mol NICS = -4.3773 ppm

N₄CPc3 -989.464080740 71.331 kcal/mol NICS = -1.8774 ppm

N₄CPc4 -989.467798628 68.998 kcal/mof NICS = -2.2494 ppm



N₄CPc5 -989.468558621 68.521 kcal/mol NICS = -3.4558 ppm

N₄CPc6 -989.455398172 76.779 kcal/mol NICS = -6.2971 ppm

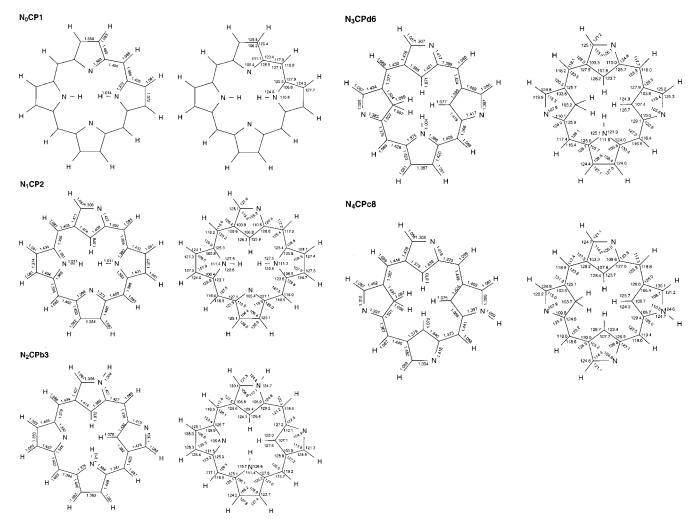
Table 1. (Continued)

N₄CPd7 -989.44851709 81.097 kcal/mol NICS = -11.5193 ppm

^a [18]-Annulenic pathways are indicated in bold.

An almost completely flat structure is calculated for N₀CP1, but the structures for other NCP are largely distorted. To illustrate the distortion clearly, the linear displays of deviations of the macrocyclic atoms of N_1CP2 , N₂CPb3, N₃CPd6, and N₄CPc8 are presented in Figure 3. The mean plane deviation of N_1CP2 is 0.123 Å, and the dihedral angles of the four pyrrole rings to the macrocycle are +16.152 (confused), -2.017 (normal), +1.666 (normal), and -2.090° (normal), respectively. The tilting angles of N₂CPb3 (mean plane deviation: 0.170 Å) are +16.601 (confused), -16.748 (confused), +2.162(*normal*), and -0.066° (*normal*), respectively. In the case of N₃CPd6 (0.215 Å), the two *confused* pyrroles consisted of sp^2 atoms are tilted $+20.982^{\circ}$ and -15.402° at the opposite direction of the mean plane. The remaining confused sp3-carbon-containing-pyrrole and the normal pyrrole are tilted +4.154° and +8.066°, respectively. With N₄CPc8 (0.251 Å), the tilting angles of the three *confused* pyrrole rings with sp²-carbons are up (+17.628°), down (-19.267°) , up $(+19.975^{\circ})$, respectively, and the sp³carbon-containing-pyrrole is tilted downward slightly (-5.771°). The dihedral angles of the *confused* pyrrole rings are larger than those of the *normal* one in the **NCP** family in general.

3-3. *Normal* **Porphyrin** (N_0CP). At first, the relative energy between the two tautomers of the *normal* porphyrin (N_0CP1 , N_0CP2) was estimated. ¹³ N_0CP1 , bearing 2 NH at the opposite site, is more stable than N_0CP2 (+8.185 kcal/mol), where the repulsion between the two


neighboring NH hydrogens is significant. ¹⁴ Structurally, N_0CP1 is more planar than N_0CP2 : the mean plane deviation and the maximum dihedral angle are (0.000 Å, 0.000°) for N_0CP1 and (0.000 Å, 0.048°) for N_0CP2 , respectively. The NICS values of these structures are -15.1280 and -14.8949 ppm, respectively, which suggest that the stable planar tautomer, N_0CP1 , is more aromatic than distorted N_0CP2 . Thus, in the *normal* porphyrin (N_0CP), the stability and the aromaticity are correlated positively.

3-4. Singly N-Confused Porphyrin (N_1 CP). N_1 CP is classified into two kinds of NH-tautomers, *inner-3H* type (N_1 CP1-3) and *inner-2H* type (N_1 CP4-6). The optimized structures of the *inner-2H* (N_1 CP4-6) showed the planarity more than the *inner-3H* (N_1 CP1-3): the mean plane deviations for N_1 CP4-6 are 0.046, 0.054, and 0.053 Å, and those of N_1 CP1-3 are 0.125, 0.123, and 0.129 Å, respectively. The dihedral angles of the *confused* pyrrole ring of N_1 CP1-3 are +14.589, +16.152, and +14.448°, and those of N_1 CP4-6 are +6.102, +5.184, and +6.971°, respectively. As expected from the Kekulé structures, the *inner-3H* type shows more negative NICS

⁽¹³⁾ A considerable numbers of theoretical study on the NH tautomers of *normal* porphyrin have been reported. (a) Ghosh, A.; Lü, T. X.; Almlöf, J. *J. Phys. Chem.* **1995**, *99*, 1073–1075. (b) Reimers, J. R.; Lü, T. X.; Crossley, M. J.; Hush, N. S. *J. Am. Chem. Soc.* **1995**, *117*, 2855–2861. (c) Ghosh, A. *Acc. Chem. Res.* **1998**, *31*, 189–198, and references therein.

⁽¹⁴⁾ Schlabach, M.; Scherer, G.; Limbach, H.-H. J. Am. Chem. Soc. 1991, 113, 3550-3558.

^{(15) (}a) Szterenberg, L.; Latos-Grażyński, L. *Inorg. Chem.* **1997**, *36*, 6287–6291. (b) Ghosh, A.; Wondimagegn, T.; Nilsen, H. J. *J. Phys. Chem. B* **1998**, *102*, 10459–10467.

Figure 2. Optimized geometries (Å, deg) of **NCP** isomers.

values (\sim -13 ppm) than the *inner-2H* type (\sim -7 ppm) (Figure 4).16 The weak aromaticity of the inner-2H may be due to the contribution of the zwitterionic resonance form.17

 N_1CP2 , the most stable (+17.147 kcal/mol) and aromatic (-13.8493 ppm) isomer in the N_1CP family, shows the effective hydrogen bonding between both the NHs and N in the core. Such inner-core hydrogen bondings play an important role to lower the energy in the inner-2H type as well, as judged by the structure of more stable N_1CP5 . On the other hand, the magnitude of the aromaticity seems to be related to the planarity of N_1CP , because the less distorted N_1CP2 and N_1CP4 are the most aromatic in the inner-3H and inner-2H type, respectively.

3-5. Doubly N-Confused Porphyrin (N₂CP). The five regioisomers of N_2 CP are grouped into two types, cis and trans, according to the relative position of the confused rings, that is, the two confused pyrroles are neighboring in cis (N2CPa-c) and countered in trans

 (N_2CPd, e) . Each isomer has inner-3H and inner-4H tautomers, and thus, 17 structures in total are possible in the N_2CP family. The results of the DFT calculation on the structures and the relative stability of N_2CP have been previously reported in which the *inner-3H* are more stable than the inner-4H in cis isomers but the inner-4H are more stable in the trans isomers. 60

The most stable isomer, N_2CPb3 , has +37.461 kcal/ mol higher energy than N_0CP1 . The *inner-4H* tautomers (N₂CPa1, b1, c1, d1, e1) can form a complete 18π conjugation system; thus, the aromaticity inferred from NICS is larger than that of the *inner-3H* type. Among the *inner-4H*, the trans isomers (N₂CPd1, e1) are more stable (ca. -6 kcal/mol) and more aromatic (ca. -2.5 ppm) than the cis isomers $(N_2CPa1, b1, c1)$. Due to the repulsive interaction in the core, the aromatic cis-N₂CP is more distorted than the *trans*- N_2 CP. In the *inner-3H* tautomers, on the other hand, the cis isomers are less aromatic (ca. +3 ppm) and distorted but are more stable (ca. -3 kcal/mol) than the trans isomers (Figure 5). The inner-core hydrogen bonding is crucial for the stabilization of cis isomers as shown in N_1CP .

3-6. Triply N-Confused Porphyrin (N₃CP). N₃CP has four regioisomers (N₃CPa-d) according to the position of the peripheral nitrogens. Each isomer has six NH tautomers, and thus, the 24 isomers in total are grouped into two types: inner-4H (N₃CP1-3) and inner-5H

⁽¹⁶⁾ In the solid state, the *confused* pyrrole ring is canted $+26.9^{\circ}$ in the inner-3H tautomer of tetraphenyl N-confused porphyrin (NC-TPP), on the other hand, the pyrrole rings are tilted only 0.2-4.7° in the inner-2H isomer. In CDCl₃, the ¹H NMR signals derived from inner CH and NH of the aromatic *inner-3H* type were observed at -4.99and -2.41 ppm, respectively. On the other hand, in DMF- d_7 , those signals of *inner-2H* type were downfield shifted at +0.76 and +2.27ppm, respectively, reflecting the weak aromaticity. See ref 4h. (17) Lash, T. D. *Synlett* **2000**, 279–295.

Table 2. Mean Plane Deviation Δ (Å) and Dihedral Angles (deg) of NCP Isomers and Tautomers^a

	Table z.	wiean P	riane Devia	Δ (A)	and Dined	rai Angles (aeg) or	NCP ISOM	ers and Ta	utomers"		
	Δ (Å)	dihedral angles (deg)					Δ (Å)		dihedral angles (deg)			
N ₀ CP1	0.000	0.000	0.000	0.000	0.000	N ₀ CP2	0.000	0.048	-0.048	0.048	-0.048	
N ₁ CP1	0.125	14.589	1.082	-3.014	-5.639	N ₁ CP4	0.046	6.102	1.071	0.560	-0.813	
N_1CP2	0.123	16.152	-2.017	1.666	-2.090	N_1CP5	0.054	5.184	0.523	-0.391	1.353	
N ₁ CP3	0.129	14.448	-6.723	3.237	0.813	N ₁ CP6	0.053	6.971	-0.996	0.518	1.928	
N ₂ CPa1	0.164	12.714	-16.776	-6.443	8.528	N ₂ CPc2	0.157	16.112	0.206	1.778	-14.174	
N ₂ CPa2	0.162	17.451	-13.599	-0.502	-2.245	N_2CPc3	0.161	19.183	-1.840	0.911	-10.797	
N ₂ CPa3	0.159	14.593	-16.251	1.319	0.404	N ₂ CPd1	0.145	14.513	-2.810	-14.558	-2.789	
N ₂ CPa4	0.166	14.203	-17.387	-0.523	-2.412	N_2CPd2	0.127	8.544	-2.953	13.059	4.047	
N ₂ CPa5	0.172	11.114	-20.826	1.571	-1.065	N ₂ CPd3	0.135	14.997	-4.094	7.435	2.707	
N ₂ CPb1	0.172	15.959	-16.012	-7.050	7.304	N ₂ CPe1	0.146	14.736	1.770	-14.725	-2.607	
N ₂ CPb2	0.175	19.484	-14.126	0.271	-1.663	N_2CPe2	0.123	14.172	-1.855	15.086	-4.394	
N ₂ CPb3	0.170	16.601	-16.748	2.162	-0.066	N ₂ CPe3	0.141	12.434	-4.123	12.147	3.516	
N ₂ CPc1	0.157	15.434	6.992	-8.852	-11.709							
N ₃ CPa1	0.200	9.879	-20.616	-17.093	2.502	N ₃ CPc1	0.207	13.226	-20.668	-17.624	2.523	
N_3CPa2	0.211	3.104	-28.765	-13.982	3.511	N_3CPc2	0.205	6.302	-26.662	-13.234	3.728	
N_3CPa3	0.214	12.269	-18.261	-20.652	3.664	N_3CPc3	0.218	12.461	-19.890	-21.521	3.297	
N ₃ CPa4	0.207	(9.224)	25.385	12.966	-4.306	N ₃ CPc4	0.210	(8.788)	25.039	15.591	-2.970	
N ₃ CPa5	0.165	15.074	(7.194)	-15.411	1.293	N_3CPc5	0.166	15.941	(-7.066)	-14.758	1.697	
N ₃ CPa6	0.198	10.031	-20.638	(-2.961)	-6.510	N ₃ CPc6	0.213	15.644	-20.640	(-4.237)	-6.502	
N ₃ CPb1	0.252	17.715	-18.415	17.480	-1.925	N ₃ CPd1	0.236	28.737	13.575	-1.443	15.335	
N_3CPb2	0.218	10.502	-29.078	-4.930	-2.552	N_3CPd2	0.201	9.526	-11.163	3.004	19.519	
N_3CPb3	0.198	8.625	-23.139	-14.646	4.942	N_3CPd3	0.210	17.115	-12.740	2.609	22.427	
N ₃ CPb4	0.214	(4.135)	21.098	-15.324	6.458	N_3CPd4	0.175	(7.382)	-16.622	-1.285	15.836	
N ₃ CPb5	0.157	15.393	(-6.344)	-14.573	0.338	N_3CPd5	0.209	24.038	(9.686)	-3.469	15.455	
N ₃ CPb6	0.198	12.993	-21.296	(-3.731)	-6.442	N ₃ CPd6	0.215	20.982	-15.402	8.066	(4.154)	
N ₄ CPa1	0.250	(6.731)	19.757	-15.764	19.133	N ₄ CPb18	0.158	15.562	(3.380)	(-2.727)	-13.845	
N ₄ CPa2	0.238	24.855	(8.540)	-17.129	12.477	N ₄ CPb19	0.173	<i>15.338</i>	-16.575	<i>(-3.269)</i>	(3.790)	
N ₄ CPa3	0.246	16.622	-19.218	(-6.961)	-19.009	N ₄ CPb20	0.171	3.811	<i>15.326</i>	-26.544	-2.806	
N ₄ CPa4	0.223	24.922	10.924	-16.109	(7.832)	N ₄ CPb21	0.246	(11.563)	22.702	(12.299)	22.579	
N ₄ CPa5	0.172	(2.812)	<i>(-3.848)</i>	-16.186	15.798	N ₄ CPb22	0.249	21.356	(11.961)	23.172	(11.672)	
N ₄ CPa6	0.251	(23.230)	23.475	(12.058)	23.737	N ₄ CPc1	0.244	(8.856)	20.139	-16.072	17.700	
N ₄ CPb1	0.252	(0.510)	7.305	-19.967	16.298	N ₄ CPc2	0.226	24.764	(7.960)	-15.951	10.395	
N ₄ CPb2	0.234	22.651	(7.830)	-14.426	17.836	N ₄ CPc3	0.239	14.867	-20.301	(-6.850)	-18.155	
N ₄ CPb3	0.240	14.549	-19.841	(-6.960)	-19.264	N ₄ CPc4	0.265	21.003	-15.105	21.010	(6.618)	
N ₄ CPb4	0.226	21.900	-2.665	-21.611	(-8.095)	N ₄ CPc5	0.240	(8.453)	26.747	12.668	-16.660	
N ₄ CPb5	0.219	(6.686)	16.131	22.268	-13.025	N ₄ CPc6	0.232	17.439	(8.616)	20.068	-13.165	
N ₄ CPb6	0.241	16.936	(6.636)	20.921	-15.767	N ₄ CPc7	0.266	10.851	-24.600	(-8.083)	-22.070	
N ₄ CPb7	0.264	11.281	-23.278	<i>(-7.340)</i>	-22.853	N ₄ CPc8	0.251	17.628	-19.267	19.975	(-5.771)	
N ₄ CPb8	0.234	10.720	-22.769	-20.422	<i>(-7.883)</i>	N ₄ CPc9	0.170	(3.665)	(-2.991)	-16.416	15.055	
N ₄ CPb9	0.254	(5.427)	18.064	-19.219	19.185	N ₄ CPc10	0.178	(3.440)	16.541	-16.914	<i>(-3.537)</i>	
N ₄ CPb10	0.233	21.766	(9.167)	-21.729	8.451	N ₄ CPc11	0.250	(9.172)	23.189	(11.775)	22.427	
N ₄ CPb11	0.239	13.934	-18.982	(-7.879)	-19.531	N ₄ CPd1	0.243	(8.848)	19.400	-14.267	19.874	
N ₄ CPb12	0.243	15.468	-14.318	-26.522	(-8.410)	N ₄ CPd2	0.240	25.072	(8.032)	-14.666	17.323	
N ₄ CPb13	0.239	(9.072)	21.953	24.762	-0.963	N ₄ CPd3	0.247	17.123	-19.451	(-6.810)	-18.504	
N ₄ CPb14	0.247	17.812	(6.352)	19.571	-17.306	N ₄ CPd4	0.264	23.315	-13.409	21.619	(5.471)	
N ₄ CPb15	0.245	12.707	-21.057	(-6.412)	-21.019	N ₄ CPd5	0.182	(3.277)	(-3.777)	-16.308	16.996	
N ₄ CPb16	0.236	18.030	-14.113	20.232	(8.225)	N ₄ CPd6	0.250	(12.426)	23.016	(11.851)	22.603	
N ₄ CPb17	0.180	(3.642)	(-3.340)	-26.533	16.167	N ₄ CPd7	0.156	(2.720)	14.717	-14.428	(-3.022)	

^a The dihedral angles of the four pyrrole rings are represented clockwise from the upper ring of the corresponding structure in Table 1. The values of the *confused* pyrrole ring are shown in *italic*, and those of the *confused sp*³-carbon-containing pyrroles are shown in parentheses.

 (N_3CP4-6) . The most stable N_3CPd6 has +54.031 kcal/ mol higher energy than N_0CP1 , but the energy difference between N₃CPd6 and the most unstable N₃CPa1 is only +5.326 kcal/mol; thus, the stability does not differ largely in the N₃CP isomers (Figure 6). The mean plane deviations (0.157–0.252 Å) are larger than N_2 CP (0.123–0.175 Å), and the dihedral angles of the confused rings become larger up to 29.078°. Interestingly, the sp³-carboncontaining-pyrroles are tilted only 9.686° in maximum. Such small dihedral angles of the sp³-rings are probably due to the steric interaction of CH2-hydrogens pointing upside and downside in the core.18 The inner-5H tautomers (N₃CP4-6) can form a complete aromatic circuit, and their NICS values (-7.9181 to -11.6985 ppm) are more negative than those of inner-4H type (N_3 CP1-3, -3.9419 to -9.3328 ppm). Thus, the correlation between the stability and aromaticity of N_3CP is weak and shows

the intermediate tendency between $\mathit{trans}\text{-}N_2CP$ and cis - N_2CP ; in other words, the aromatic property is not directly related to the stability in N_3CP .

3-7. Fully N-Confused Porphyrin (N₄CP). N₄CP are classified by four regioisomers (N₄CPa-d), and the 46 N₄CP tautomers are grouped into two types: *inner-5H* and *inner-6H*. The structures of the all N₄CP tautomers are distorted, but the deviation (0.156–0.264 Å) and the maximum dihedral angles (\pm 26.8°) are almost in the same range as observed in N₃CP. The *inner-6H* tautomers are less stable (ca. \pm 10 kcal/mol) compared

⁽¹⁸⁾ Internal CH₂ structures were reported in the protonated carbaporphyrin and *trans*-dicarbaporphyrin. (a) Lash, T. D.; Hayes, M. J. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 840–842. (b) Lash, T. D.; Romanic, J. L.; Hayes, M. J.; Spence, J. D. *Chem. Commun.* **1999**, 819–820.

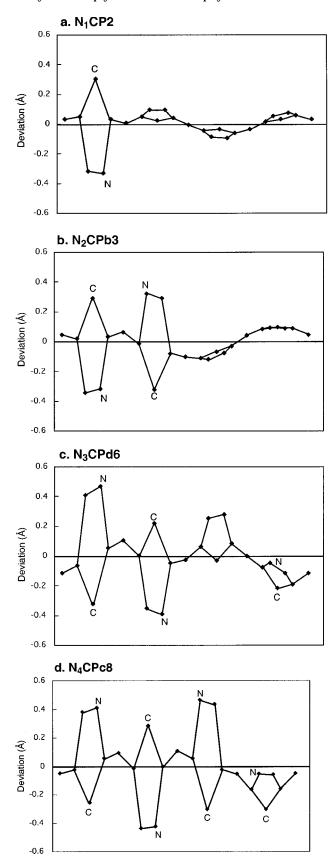


Figure 3. Linear display of deviations (Å) of the macrocycle atoms from the least-squares plane of the 24 heavy atoms.

to the inner-5H type due to the repulsion of the inner hydrogens. In the *inner-6H* type, the tautomers with neighboring two confused sp³-carbon-containing-pyrroles make the macrocycle more planar (0.156-0.182 Å); on

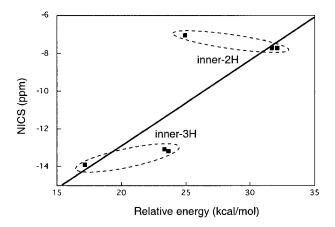


Figure 4. Plots of NICS (ppm) and the relative energies (kcal/ mol) for N_1 CP. The solid line denotes the least-squares line for the all isomers.

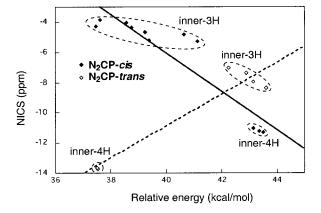
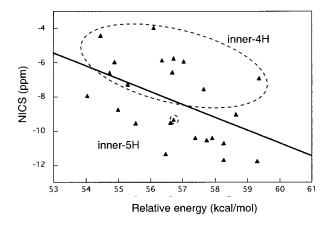
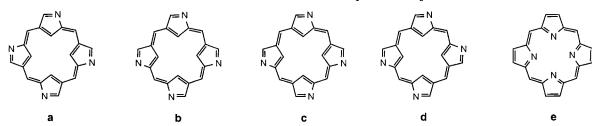
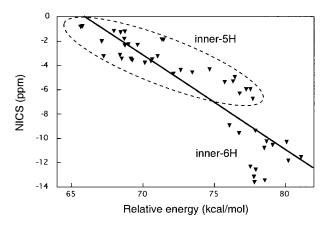


Figure 5. Plots of NICS (ppm) and the relative energies (kcal/ mol) for N2CP. The solid and the dotted lines denote the leastsquares lines for the cis and trans isomers, respectively.


Figure 6. Plots of NICS (ppm) and the relative energies (kcal/ mol) for N_3 CP. The solid line denotes the least-squares line for the all isomers.

the other hand, the tautomers with a countered arrangement cause a dome-shaped deviation (0.246-0.251 Å).

The larger aromaticity of the *inner-6H* type, which possesses the complete aromatic circuit, was illustrated by the lower NICS values (-8.9142 to -13.6224 ppm) compared to that of inner-5H tautomers (-0.8065 to −6.7700 ppm) (Figure 7). Surprisingly, the most stable isomers (N_4CPb9 , c8) with the energies of 65.774 and 65.636 kcal/mol, respectively, are almost nonaromatic

Chart 2. Oxidized Forms of N₄CP and N₀CP

Figure 7. Plots of NICS (ppm) and the relative energies (kcal/mol) for N_4CP . The solid line denotes the least-squares line for the all isomers.

(-0.8065, -0.8204 ppm). Thus, in the fully *confused* level, the steric energy is predominant over the aromatic stabilization of the macrocycles.¹⁹

Finally, the oxidized form of N_4CP in Chart 2 is worth mentioning. The relative energies of these structures (**a**–**e**) are in the range of 0 to -9.661 kcal/mol. This proves that the *confused* forms (**a**–**d**) are more stable than the *normal* form (**e**) in the oxidized state.²⁰ The stability of the fully *confused* core could be explained by the lack of

(19) We have examined the isoporphyrin type of N_4CP (N_4CPc8) for the comparison with the most stable, nonaromatic isomer N_4CPc8 .

Interestingly, the relative energy and NICS value of N_4CPc8' are +69.257 kcal/mol and +1.3230 ppm, which indicates the disruption of π -conjugation by sp^3 meso-carbon destabilizes only at +3.621 kcal/mol.

mutual repulsion of the lone pair electrons on the pyrrolic nitrogens in the core. Assuming the facile protonation at the peripheral nitrogens, such a fully *confused* configuration would be important for the design and the synthesis of N_4CP , especially in the metal coordination state.

4. Summary

The structures, stability, and aromaticity of 95 isomers of **NCP** including the *normal* porphyrin have been estimated by DFT calculations. By increasing the number of the *confused* pyrrole rings, the total energies of the stable **NCP** isomers increase by approximately +18 kcal/mol for every *confusion* step. In the case of *normal* and singly *confused* porphyrin, the most stable isomers are the most aromatic. In the multiply *confused* porphyrins like *cis*-N₂CP, N₃CP, and N₄CP, on the other hand, the aromaticity was enhanced in the relatively unstable tautomers. The aromaticity and the stability of **NCP** are not simply correlated but the steric factor becomes more important than the aromatic stabilization of **NCP** in the upper *confusion* level.

Because of the involvement of the *confused sp*³-carbon-containing pyrrole rings, the properties of the multiply *confused* porphyrin like N_3CP and N_4CP should be quite different from that of already synthesized N_1CP or N_2CP . The calculated results described here would be informative for the design of the synthetic pathway to the whole NCP family. Such efforts are continuously under way.

Supporting Information Available: Cartesian coordinates of the optimized structures of the isomers of **NCP** family. This material is available free of charge via the Internet at http://pubs.acs.org.

JO016051B

(20) The relative energy (kcal/mol) and NICS (ppm) values for the oxidized structures $\mathbf{a}-\mathbf{e}$ are ($\mathbf{a}:-9.661,+4.9361$), ($\mathbf{b}:-7.415,+6.2178$), ($\mathbf{c}:-5.960,+8.5820$), ($\mathbf{d}:-5.669,+8.6553$), and ($\mathbf{e}:0,+19.7167$), respectively. The positive NICS values of these structures represent the antiaromatic nature of the oxidized forms. Minkin, V. L.; Glukhovtsev, M. N.; Simkin, B. Y. *Aromaticity and Antiaromaticity*; Wiley: New York, 1986.